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E ssentials of Business Analytics 2E is designed to introduce the concept of business 
analytics to undergraduate and graduate students. This textbook contains one of the 

�rst collections of materials that are essential to the growing �eld of business analytics. In 
Chapter 1 we present an overview of business analytics and our approach to the material in 
this textbook. In simple terms, business analytics helps business professionals make better 
decisions based on data. We discuss models for summarizing, visualizing, and understand-
ing useful information from historical data in Chapters 2 through 6. Chapters 7 through 9 
introduce methods for both gaining insights from historical data as well as predicting pos-
sible future outcomes. Chapter 10 covers the use of spreadsheets for examining data and 
building decision models. In Chapters 11 through 12 we discuss optimization models to help 
decision makers choose the best decision based on the available data. Chapter 13 presents 
material that some may consider more advanced forms of optimization (nonlinear optimiza-
tion models), although these models are extremely useful and widely applicable to many 
business situations. In any case, some instructors may choose to omit covering Chapter 13. 
In Chapter 14 we introduce the concept of simulation models for understanding the effect 
of uncertainty on decisions. Chapter 15 is an overview of decision analysis approaches for 
incorporating a decision maker’s views about risk into decision making. In Appendix A we 
present optional material for students who need to learn the basics of using Microsoft Excel. 
The use of databases and manipulating data in Microsoft Access is discussed in Appendix B.

This textbook can be used by students who have previously taken a course on basic 
statistical methods as well as students who have not had a prior course in statistics. The 
expanded material in the second edition of Essentials of Business Analytics also makes it 
amenable to a two-course sequence in business statistics and analytics. All statistical con-
cepts contained in this textbook are presented from a business analytics perspective using 
practical business examples. Chapters 2, 5, 6 and 7 provide an introduction to basic statis-
tical concepts that form the foundation for more advanced analytics methods. Chapters 3, 4 
and 9 cover additional topics of data visualization and data mining that are not traditionally 
part of most introductory business statistics courses, but they are exceedingly important and 
commonly used in current business environments. Chapter 10 and Appendix A provide the 
foundational knowledge students need to use Microsoft Excel for analytics applications. 
Chapters 11 through 15 build upon this spreadsheet knowledge to present additional topics 
that are used by many organizations that are leaders in the use of prescriptive analytics to 
improve decision making.

Updates in the Second Edition
The second edition of Essentials of Business Analytics is a major revision of the �rst edition. 
We have added several new chapters, expanded the coverage of existing chapters, and up-
dated all chapters based on changes in the software used with this textbook. Stylistically, the 
2nd edition of Essentials of Business Analytics also has an entirely new look. We have added 
full-color �gures throughout the textbook that make many chapters much more meaningful 
and easier to read.

 ● New Chapters on Probability and Statistical Inference. Chapters 5 and 6 are new 
to this edition. Chapter 5 covers an introduction to probability for those students who 
are not familiar with basic probability concepts such as random variables, condi-
tional probability, Bayes’ theorem, and probability distributions. Chapter 6 presents 
statistical inference topics such as sampling, sampling distributions, interval estima-
tion, and hypothesis testing. These two chapters extend the basic statistical coverage 

Preface
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of Essentials of Business Analytics (in conjunction with Chapter 2 on Descriptive 
Statistics and Chapter 7 on Linear Regression) so that the textbook includes a full 
coverage of introductory business statistics for students who are unfamiliar with 
these concepts.

 ● Expanded Data Mining Coverage. The Data Mining chapter from the first edition has 
been broken into two chapters: Chapter 4 on Descriptive Data Mining and Chapter 9 
on Predictive Data Mining. This allows us to cover additional material related to 
these concepts and to also clearly delineate the different forms of data mining based 
on their intended result. Chapter 4 on Descriptive Data Mining covers unsupervised 
learning methods such as clustering and association rules where the user is interested 
in identifying relationships among observations rather than predicting specific out-
come variables. Chapter 4 also covers very important topics related to data preparation 
including missing data, outliers, and variable representation. Chapter 9 on Predictive 
Data Mining introduces supervised learning methods that are used to predict an out-
come based on a set of input variables. The methods covered in Chapter 9 include 
logistic regression, k-nearest neighbors clustering, and classification and regression 
trees. Additional data preparation methods such as data sampling and data portioning 
are also covered in this chapter.

 ● Revision of Linear Regression Chapter. Based on user feedback from the first 
edition, Chapter 7’s coverage of linear regression has been substantially revised to 
streamline the exposition with a focus on intuitive understanding without sacrificing 
technical accuracy. The appendix of this chapter has been expanded to demonstrate 
the construction of prediction intervals using the Analytic Solver Platform software. 

 ● New Appendix to Chapter 8. Chapter 8 on Time Series Analysis and Forecasting 
now includes an appendix on Excel 2016’s new Forecast Sheet tool for implementing 
Holt-Winters additive seasonal smoothing model.

 ● Revision of Simulation Chapter. As with all other chapters, the coverage of Analytics 
Solver Platform has been moved to the appendix. All material in the body of the 
chapter uses only native Excel to implement Monte Carlo simulations. 

 ● Coverage of Analytic Solver Platform (ASP) Moved to Chapter Appendices. All 
coverage of the Excel add-in, Analytics Solver Platform, has been moved to the chap-
ter appendices. This means that instructors can now cover all the material in the bodies 
of the chapters using only native Excel functionality. ASP is used most heavily in the 
data mining and simulation chapters, so the result of this change is that the chapter 
appendices are quite long for Chapters 4, 9, and 14. However, this change makes it 
easier for an instructor to tailor a course’s coverage of data mining concepts and the 
execution of these concepts. 

 ● Updates to ASP. All examples, problems, and solutions have been updated in re-
sponse to changes in the ASP software. Frontline Systems, the developer of ASP, im-
plemented a major rewrite of the code base that powers ASP shortly after the release of 
the first edition of Essentials of Business Analytics. This new code base is much faster 
and more stable than the previous releases of ASP, but it also completely changed the 
output given by ASP in many cases. All the material related to ASP is updated to cor-
respond to Analytic Solver Platform V2016 (16.0.0). 

 ● Incorporation of Excel 2016. Most updates in Excel 2016 are relatively minor as 
they relate to its use for statistics and analytics. However, Excel 2016 does have new 
options for creating Charts in Excel and for implementing forecasting methods. Excel 
2016 allows for the creation of box plots, tree maps, and several other data visualiza-
tion tools that could not be created in previous versions of Excel. Excel’s new Forecast 
Sheet tool implements a time series forecasting model known as the Holt-Winters 
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additive seasonal smoothing model; this is covered in the appendix to Chapter 8. Sev-
eral other minor updates to the Ribbon and tabs have also been made in Excel 2016. All 
material in the second edition of this textbook is easily accessible for students using 
earlier versions of Excel. For Excel tools that are only implementable in Excel 2016, 
we include these either in a chapter appendix (such as Forecast Sheet in Chapter 8 
appendix) or with margin notes explaining how the same action can be executed in 
Excel 2013.

 ● Additional Excel Features Incorporated. Several other features that were 
introduced in Excel 2013 have been more fully incorporated in this edition. Chapter 2 
introduces the Quick Analysis button in Excel, and Chapter 3 now makes full use 
of the Chart Buttons in Excel. The Quick Analysis button is a shortcut method for 
accomplishing many common Excel formatting and other tasks. The Chart Buttons 
make it much easier to format, edit, and analyze charts in Excel. Chapter 3 also now 
also includes coverage of the Recommended PivotTables and Recommended Charts 
tools in Excel.

 ● New Style and More Color. The second edition of Essentials of Business Analytics
includes full color figures and a new color template throughout the text. This makes 
much of the material covered, such as Chapter 3 on Data Visualization, much easier 
for students to interpret and understand.

Continued Features and Pedagogy
The style of this textbook is based on the other classic textbooks written by the Anderson, 
Sweeney, and Williams (ASW) team. Some of the speci�c features that we use in this text-
book are listed below.

 ● Integration of Microsoft Excel: Excel has been thoroughly integrated throughout 
this textbook. For many methodologies, we provide instructions for how to perform 
calculations both by hand and with Excel. In other cases where realistic models are 
practical only with the use of a spreadsheet, we focus on the use of Excel to describe 
the methods to be used.

 ● Notes and Comments: At the end of many sections, we provide Notes and Comments 
to give the student additional insights about the methods presented in that section. 
These insights include comments on the limitations of the presented methods, recom-
mendations for applications, and other matters. Additionally, margin notes are used 
throughout the textbook to provide additional insights and tips related to the specific 
material being discussed.

 ● Analytics in Action: Each chapter contains an Analytics in Action article. These ar-
ticles present interesting examples of the use of business analytics in practice. The 
examples are drawn from many different organizations in a variety of areas including 
healthcare, finance, manufacturing, marketing, and others.

 ● DATAfiles and MODELfiles: All data sets used as examples and in student ex-
ercises are also provided online as files available for download by the student. 
DATAfiles are Excel files that contain data needed for the examples and problems 
given in the textbook. MODELfiles contain additional modeling features such as 
extensive use of Excel formulas or the use of Excel Solver or Analytic Solver 
Platform.

 ● Problems and Cases: With the exception of Chapter 1, each chapter contains an ex-
tensive selection of problems to help the student master the material presented in that 
chapter. The problems vary in difficulty and most relate to specific examples of the use 
of business analytics in practice. Answers to even-numbered problems are provided in 
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an online supplement for student access. With the exception of Chapter 1, each chap-
ter also includes an in-depth case study that connects many of the different methods 
introduced in the chapter. The case studies are designed to be more open-ended than 
the chapter problems, but enough detail is provided to give the student some direction 
in solving the cases.

MindTap
MindTap is a customizable digital course solution that includes an interactive eBook, auto-
graded exercises from the textbook, and author-created video walkthroughs of key chapter 
concepts and select examples that use Analytic Solver platform. All of these materials offer 
students better access to understand the materials within the course. For more information 
on MindTap, please contact your Cengage representative. 

For Students
Online resources are available to help the student work more ef�ciently. The resources can 
be accessed through www.cengagebrain.com.

 ● Analytic Solver Platform: Instructions to download an educational version of Front-
line Systems’ Analytic Solver Platform are included with the purchase of this textbook. 
These instructions can be found within the inside front cover of this text. 

For Instructors
Instructor resources are available to adopters on the Instructor Companion Site, which can 
be found and accessed at www.cengage.com, including:

 ● Solutions Manual: The Solutions Manual, prepared by the authors, includes solutions 
for all problems in the text. It is available online as well as print.

 ● Solutions to Case Problems: These are also prepared by the authors and contain 
solutions to all case problems presented in the text.

 ● PowerPoint Presentation Slides: The presentation slides contain a teaching outline 
that incorporates figures to complement instructor lectures.

 ● Test Bank: Cengage Learning Testing Powered by Cognero is a flexible, online system 
that allows you to:

 ● author, edit, and manage test bank content from multiple Cengage Learning 
solutions, 

 ● create multiple test versions in an instant, and
 ● deliver tests from your LMS, your classroom, or wherever you want. The Test 

Bank is also available in Microsoft Word. 
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2 Chapter 1 Introduction

You apply for a loan for the �rst time. How does the bank assess the riskiness of the loan 
it might make to you? How does Amazon.com know which books and other products to 
recommend to you when you log in to their web site? How do airlines determine what 
price to quote to you when you are shopping for a plane ticket? How can doctors better 
diagnose and treat you when you are ill or injured?

You may be applying for a loan for the �rst time, but millions of people around the world 
have applied for loans before. Many of these loan recipients have paid back their loans in 
full and on time, but some have not. The bank wants to know whether you are more like 
those who have paid back their loans or more like those who defaulted. By comparing your 
credit history, �nancial situation, and other factors to the vast database of previous loan 
recipients, the bank can effectively assess how likely you are to default on a loan.

Similarly, Amazon.com has access to data on millions of purchases made by customers 
on its web site. Amazon.com examines your previous purchases, the products you have 
viewed, and any product recommendations you have provided. Amazon.com then searches 
through its huge database for customers who are similar to you in terms of product 
purchases, recommendations, and interests. Once similar customers have been identi�ed, 
their purchases form the basis of the recommendations given to you.

Prices for airline tickets are frequently updated. The price quoted to you for a �ight 
between New York and San Francisco today could be very different from the price that will 
be quoted tomorrow. These changes happen because airlines use a pricing strategy known 
as revenue management. Revenue management works by examining vast amounts of data 
on past airline customer purchases and using these data to forecast future purchases. These 
forecasts are then fed into sophisticated optimization algorithms that determine the optimal 
price to charge for a particular �ight and when to change that price. Revenue management 
has resulted in substantial increases in airline revenues.

Finally, consider the case of being evaluated by a doctor for a potentially serious medical 
issue. Hundreds of medical papers may describe research studies done on patients facing 
similar diagnoses, and thousands of data points exist on their outcomes. However, it is 
extremely unlikely that your doctor has read every one of these research papers or is aware of 
all previous patient outcomes. Instead of relying only on her medical training and knowledge 
gained from her limited set of previous patients, wouldn’t it be better for your doctor to have 
access to the expertise and patient histories of thousands of doctors around the world?

A group of IBM computer scientists initiated a project to develop a new decision 
technology to help in answering these types of questions. That technology is called Watson, 
named after the founder of IBM, Thomas J. Watson. The team at IBM focused on one aim: 
how the vast amounts of data now available on the Internet can be used to make more data-
driven, smarter decisions.

Watson became a household name in 2011, when it famously won the television game 
show, Jeopardy! Since that proof of concept in 2011, IBM has reached agreements with the 
health insurance provider WellPoint (now part of Anthem), the �nancial services company 
Citibank, and Memorial Sloan-Kettering Cancer Center to apply Watson to the decision 
problems that they face.

Watson is a system of computing hardware, high-speed data processing, and analytical 
algorithms that are combined to make data-based recommendations. As more and more 
data are collected, Watson has the capability to learn over time. In simple terms, according 
to IBM, Watson gathers hundreds of thousands of possible solutions from a huge data 
bank, evaluates them using analytical techniques, and proposes only the best solutions 
for consideration. Watson provides not just a single solution, but rather a range of good 
solutions with a con�dence level for each.

For example, at a data center in Virginia, to the delight of doctors and patients, Watson 
is already being used to speed up the approval of medical procedures. Citibank is beginning 
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to explore how to use Watson to better serve its customers, and cancer specialists at more 
than a dozen hospitals in North America are using Watson to assist with the diagnosis and 
treatment of patients.1

This book is concerned with data-driven decision making and the use of analytical 
approaches in the decision-making process. Three developments spurred recent explosive 
growth in the use of analytical methods in business applications. First, technological 
advances—such as improved point-of-sale scanner technology and the collection of data 
through e-commerce, Internet social networks, and data generated from personal electronic 
devices—produce incredible amounts of data for businesses. Naturally, businesses want to use 
these data to improve the ef�ciency and pro�tability of their operations, better understand their 
customers, price their products more effectively, and gain a competitive advantage. Second, 
ongoing research has resulted in numerous methodological developments, including advances 
in computational approaches to effectively handle and explore massive amounts of data, faster 
algorithms for optimization and simulation, and more effective approaches for visualizing 
data. Third, these methodological developments were paired with an explosion in computing 
power and storage capability. Better computing hardware, parallel computing, and, more 
recently, cloud computing (the remote use of hardware and software over the Internet) have 
enabled businesses to solve big problems more quickly and more accurately than ever before.

In summary, the availability of massive amounts of data, improvements in analytic 
methodologies, and substantial increases in computing power have all come together to result in 
a dramatic upsurge in the use of analytical methods in business and a reliance on the discipline 
that is the focus of this text: business analytics. Figure 1.1 shows the job trend for analytics from 
2006 to 2015. The chart from indeed.com shows the percentage of job ads that contain the word 
analytics and illustrates that demand has grown and continues to be strong for analytical skills.

Business analytics is a crucial area of study for students looking to enhance their 
employment prospects. It has been predicted that by 2018 there will be a shortage of 
more than 1.5 million business managers with adequate training in analytics in the 
United States alone.2 As stated in the Preface, the purpose of this text is to provide 

FIGURE 1.1 Analytics Job Trend According to Indeed.com
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It is difficult to know for sure 
the cause of the large spike 
in analytics job ads in 2008. 
We do note, however, that 
the thought-provoking book 
Competing on Analytics by 
Davenport and Harris was 
published in 2007.

1“IBM’s Watson Is Learning Its Way to Saving Lives,” Fastcompany web site, December 8, 2012; “IBM’s Watson  
Targets Cancer and Enlists Prominent Providers in the Fight,” ModernHealthcare web site, May 5, 2015.
2J. Manyika et al., “Big Data: The Next Frontier for Innovation, Competition and Productivity,” McKinsey Global 
Institute Report, 2011.
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students with a sound conceptual understanding of the role that business analytics plays 
in the decision-making process. To reinforce the applications orientation of the text 
and to provide a better understanding of the variety of applications in which analytical 
methods have been used successfully, Analytics in Action articles are presented 
throughout the book. Each Analytics in Action article summarizes an application of 
analytical methods in practice. 

1.1 Decision Making
It is the responsibility of managers to plan, coordinate, organize, and lead their 
organizations to better performance. Ultimately, managers’ responsibilities require that 
they make strategic, tactical, or operational decisions. Strategic decisions involve higher-
level issues concerned with the overall direction of the organization; these decisions de�ne 
the organization’s overall goals and aspirations for the future. Strategic decisions are 
usually the domain of higher-level executives and have a time horizon of three to �ve years. 
Tactical decisions concern how the organization should achieve the goals and objectives 
set by its strategy, and they are usually the responsibility of midlevel management. Tactical 
decisions usually span a year and thus are revisited annually or even every six months. 
Operational decisions affect how the �rm is run from day to day; they are the domain of 
operations managers, who are the closest to the customer.

Consider the case of the Thoroughbred Running Company (TRC). Historically, 
TRC had been a catalog-based retail seller of running shoes and apparel. TRC sales 
revenues grew quickly as it changed its emphasis from catalog-based sales to Internet-
based sales. Recently, TRC decided that it should also establish retail stores in the malls 
and downtown areas of major cities. This strategic decision will take the �rm in a new 
direction that it hopes will complement its Internet-based strategy. TRC middle managers 
will therefore have to make a variety of tactical decisions in support of this strategic 
decision, including how many new stores to open this year, where to open these new 
stores, how many distribution centers will be needed to support the new stores, and where 
to locate these distribution centers. Operations managers in the stores will need to make 
day-to-day decisions regarding, for instance, how many pairs of each model and size of 
shoes to order from the distribution centers and how to schedule their sales personnel’s 
work time.

Regardless of the level within the �rm, decision making can be de�ned as the following 
process:

1. Identify and de�ne the problem.
2. Determine the criteria that will be used to evaluate alternative solutions.
3. Determine the set of alternative solutions.
4. Evaluate the alternatives.
5. Choose an alternative.

Step 1 of decision making, identifying and de�ning the problem, is the most critical. Only 
if the problem is well-de�ned, with clear metrics of success or failure (step 2), can a proper 
approach for solving the problem (steps 3 and 4) be devised. Decision making concludes 
with the choice of one of the alternatives (step 5).

There are a number of approaches to making decisions: tradition (“We’ve always done 
it this way”), intuition (“gut feeling”), and rules of thumb (“As the restaurant owner, 
I schedule twice the number of waiters and cooks on holidays”). The power of each of 
these approaches should not be underestimated. Managerial experience and intuition are 
valuable inputs to making decisions, but what if relevant data were available to help us 
make more informed decisions? With the vast amounts of data now generated and stored 

If I were given one hour to 
save the planet, I would 
spend 59 minutes defining 
the problem and one minute 
resolving it.

—Albert Einstein
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electronically, it is estimated that the amount of data stored by businesses more than 
doubles every two years. How can managers convert these data into knowledge that they 
can use to be more ef�cient and effective in managing their businesses?

1.2 Business Analytics De�ned
What makes decision making dif�cult and challenging? Uncertainty is probably the 
number one challenge. If we knew how much the demand will be for our product, we could 
do a much better job of planning and scheduling production. If we knew exactly how long 
each step in a project will take to be completed, we could better predict the project’s cost 
and completion date. If we knew how stocks will perform, investing would be a lot easier.

Another factor that makes decision making dif�cult is that we often face such an 
enormous number of alternatives that we cannot evaluate them all. What is the best 
combination of stocks to help me meet my �nancial objectives? What is the best product 
line for a company that wants to maximize its market share? How should an airline price its 
tickets so as to maximize revenue?

Business analytics is the scienti�c process of transforming data into insight for making 
better decisions.3 Business analytics is used for data-driven or fact-based decision making, 
which is often seen as more objective than other alternatives for decision making.

As we shall see, the tools of business analytics can aid decision making by creating 
insights from data, by improving our ability to more accurately forecast for planning, 
by helping us quantify risk, and by yielding better alternatives through analysis and 
optimization. A study based on a large sample of �rms that was conducted by researchers 
at MIT’s Sloan School of Management and the University of Pennsylvania, concluded that 
�rms guided by data-driven decision making have higher productivity and market value 
and increased output and pro�tability.4

1.3 A Categorization of Analytical Methods and Models
Business analytics can involve anything from simple reports to the most advanced 
optimization techniques (methods for �nding the best course of action). Analytics is 
generally thought to comprise three broad categories of techniques: descriptive analytics, 
predictive analytics, and prescriptive analytics.

Descriptive Analytics
Descriptive analytics encompasses the set of techniques that describes what has happened in 
the past. Examples are data queries, reports, descriptive statistics, data visualization including 
data dashboards, some data-mining techniques, and basic what-if spreadsheet models.

A data query is a request for information with certain characteristics from a database. 
For example, a query to a manufacturing plant’s database might be for all records of 
shipments to a particular distribution center during the month of March. This query 
provides descriptive information about these shipments: the number of shipments, how 
much was included in each shipment, the date each shipment was sent, and so on. A report 
summarizing relevant historical information for management might be conveyed by the 
use of descriptive statistics (means, measures of variation, etc.) and data-visualization tools 
(tables, charts, and maps). Simple descriptive statistics and data-visualization techniques 
can be used to �nd patterns or relationships in a large database.

Some firms and industries use 
the simpler term, analytics. 
Analytics is often thought 
of as a broader category 
than business analytics, 
encompassing the use of 
analytical techniques in the 
sciences and engineering 
as well. In this text, we 
use business analytics and 
analytics synonymously.

Appendix B at the end of this 
book describes how to use 
Microsoft Access to conduct 
data queries. 

3We adopt the definition of analytics developed by the Institute for Operations Research and the Management  
Sciences (INFORMS).
4E. Brynjolfsson, L. M. Hitt, and H. H. Kim, “Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm 
Performance?” (April 18, 2013). Available at SSRN, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486.
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6 Chapter 1 Introduction

Data dashboards are collections of tables, charts, maps, and summary statistics that 
are updated as new data become available. Dashboards are used to help management 
monitor speci�c aspects of the company’s performance related to their decision-making 
responsibilities. For corporate-level managers, daily data dashboards might summarize 
sales by region, current inventory levels, and other company-wide metrics; front-line 
managers may view dashboards that contain metrics related to staf�ng levels, local 
inventory levels, and short-term sales forecasts.

Data mining is the use of analytical techniques for better understanding patterns and 
relationships that exist in large data sets. For example, by analyzing text on social network 
platforms like Twitter, data-mining techniques (including cluster analysis and sentiment 
analysis) are used by companies to better understand their customers. By categorizing 
certain words as positive or negative and keeping track of how often those words appear in 
tweets, a company like Apple can better understand how its customers are feeling about a 
product like the Apple Watch. 

Predictive Analytics
Predictive analytics consists of techniques that use models constructed from past data 
to predict the future or ascertain the impact of one variable on another. For example, past 
data on product sales may be used to construct a mathematical model to predict future 
sales. This mode can factor in the product’s growth trajectory and seasonality based on past 
patterns. A packaged-food manufacturer may use point-of-sale scanner data from retail 
outlets to help in estimating the lift in unit sales due to coupons or sales events. Survey data 
and past purchase behavior may be used to help predict the market share of a new product. 
All of these are applications of predictive analytics.

Linear regression, time series analysis, some data-mining techniques, and simulation, 
often referred to as risk analysis, all fall under the banner of predictive analytics. We 
discuss all of these techniques in greater detail later in this text.

Data mining, previously discussed as a descriptive analytics tool, is also often used 
in predictive analytics. For example, a large grocery store chain might be interested in 
developing a targeted marketing campaign that offers a discount coupon on potato chips. 
By studying historical point-of-sale data, the store may be able to use data mining to 
predict which customers are the most likely to respond to an offer on discounted chips by 
purchasing higher-margin items such as beer or soft drinks in addition to the chips, thus 
increasing the store’s overall revenue.

Simulation involves the use of probability and statistics to construct a computer model 
to study the impact of uncertainty on a decision. For example, banks often use simulation 
to model investment and default risk in order to stress-test �nancial models. Simulation is 
also often used in the pharmaceutical industry to assess the risk of introducing a new drug.

Prescriptive Analytics
Prescriptive analytics differs from descriptive or predictive analytics in that prescriptive 
analytics indicates a best course of action to take; that is, the output of a prescriptive 
model is a best decision. The airline industry’s use of revenue management is an example 
of a prescriptive analytics. Airlines use past purchasing data as inputs into a model that 
recommends the best pricing strategy across all �ights in order to maximize revenue.

Other examples of prescriptive analytics are portfolio models in �nance, supply 
network design models in operations, and price-markdown models in retailing. Portfolio 
models use historical investment return data to determine which mix of investments will 
yield the highest expected return while controlling or limiting exposure to risk. Supply-
network design models provide data about plant and distribution center locations that will 
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minimize costs while still meeting customer service requirements. Given historical data, 
retail price markdown models yield revenue-maximizing discount levels and the timing 
of discount offers when goods have not sold as planned. All of these models are known as 
optimization models, that is, models that give the best decision subject to the constraints 
of the situation.

Another type of modeling in the prescriptive analytics category is simulation 
 optimization, which combines the use of probability and statistics to model uncertainty 
with optimization techniques to �nd good decisions in highly complex and highly uncertain 
settings. Finally, the techniques of decision analysis can be used to develop an optimal 
strategy when a decision maker is faced with several decision alternatives and an uncertain 
set of future events. Decision analysis also employs utility theory, which assigns values to 
outcomes based on the decision maker’s attitude toward risk, loss, and other factors.

In this text we cover all three areas of business analytics: descriptive, predictive, and 
prescriptive. Table 1.1 shows how the chapters cover the three categories.

1.4 Big Data
Walmart handles over 1 million purchase transactions per hour. Facebook processes 
more than 250 million picture uploads per day. Six billion cell-phone owners around the 
world generate vast amounts of data by calling, texting, tweeting, and browsing the web 
on a daily basis.5 As Google CEO Eric Schmidt has noted, the amount of data currently 
created every 48 hours is equivalent to the entire amount of data created from the dawn of 
civilization until the year 2003. It is through technology that we have truly been thrust into 
the data age. Because data can now be collected electronically, the amounts of it available 
are staggering. The Internet, cell phones, retail checkout scanners, surveillance video, and 
sensors on everything from aircraft to cars to bridges allow us to collect and store vast 
amounts of data in real time.

Chapter Title Descriptive Predictive Prescriptive

1 Introduction ● ● ●

2 Descriptive Statistics ●

3 Data Visualization ●

4 Descriptive Data Mining ●

5 Probability: An Introduction to Modeling  
Uncertainty

●

6 Statistical Inference ●

7 Linear Regression ●

8 Time Series and Forecasting ●

9 Predictive Data Mining ●

10 Spreadsheet Models ●

11 Linear Optimization Models ●

12 Integer Optimization Models ●

13 Nonlinear Optimization Models ●

14 Simulation ● ●

15 Decision Analysis ●

TABLE 1.1 Coverage of Business Analytics Topics in This Text

5SAS White Paper, “Big Data Meets Big Data Analytics,” SAS Institute, 2012.
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8 Chapter 1 Introduction

In the midst of all of this data collection, the new term big data has been created. There 
is no universally accepted de�nition of big data. However, probably the most accepted and 
most general de�nition is that big data is any set of data that is too large or too complex 
to be handled by standard data-processing technics and typical desktop software. IBM 
describes the phenomenon of big data through the four Vs: volume, velocity, variety, and 
veracity, as shown in Figure 1.2.6

Volume
Because data are collected electronically, we are able to collect more of it. To be useful, 
these data must be stored, and this storage has led to vast quantities of data. Many companies 
now store in excess of 100 terabytes of data (a terabyte of data is 100,000 gigabytes).

Velocity
Real-time capture and analysis of data present unique challenges both in how data are 
stored and the speed with which those data can be analyzed for decision making. For 
example, the New York Stock Exchange collects 1 terabyte of data in a single trading 
session, and having current data and real-time rules for trades and predictive modeling are 
important for managing stock portfolios.

FIGURE 1.2 The 4 Vs of Big Data

Volume

Data at Rest

Terabytes to exabytes of
existing data to process

Velocity

Data in Motion

Streaming data, milliseconds
to seconds to respond

Variety

Data in Many Forms

Structured, unstructured,
text, multimedia

Veracity

Data in Doubt

Uncertainly due to data
inconsistency & incompleteness,
ambiguities, latency, deception,
model approximations

Source: IBM

6IBM web site: http://www.ibmbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data.jpg.
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Variety
In addition to the sheer volume and speed with which companies now collect data, more 
complicated types of data are now available and are proving to be of great value to 
businesses. Text data are collected by monitoring what is being said about a company’s 
products or services on social media platforms such as Twitter. Audio data are collected 
from service calls (on a service call, you will often hear “this call may be monitored for 
quality control”). Video data collected by in-store video cameras are used to analyze 
shopping behavior. Analyzing information generated by these nontraditional sources is 
more complicated in part because of the processing required to transform the data into a 
numerical form that can be analyzed.

Veracity
Veracity has to do with how much uncertainty is in the data. For example, the data could 
have many missing values, which makes reliable analysis a challenge. Inconsistencies in 
units of measure and the lack of reliability of responses in terms of bias also increase the 
complexity of the data. 

Businesses have realized that understanding big data can lead to a competitive 
advantage. Although big data represents opportunities, it also presents challenges in 
terms of data storage and processing, security and available analytical talent.

The four Vs indicate that big data creates challenges in terms of how these complex 
data can be captured, stored, and processed; secured; and then analyzed. Traditional 
databases more or less assume that data �t into nice rows and columns, but that is 
not always the case with big data. Also, the sheer volume (the �rst V) often means 
that it is not possible to store all of the data on a single computer. This has led to new 
technologies like Hadoop—an open-source programming environment that supports 
big data processing through distributed storage and distributed processing on clusters 
of computers. Essentially, Hadoop provides a divide-and-conquer approach to handling 
massive amounts of data, dividing the storage and processing over multiple computers. 
MapReduce is a programming model used within Hadoop that performs the two major 
steps for which it is named: the map step and the reduce step. The map step divides the 
data into manageable subsets and distributes it to the computers in the cluster (often 
termed nodes) for storing and processing. The reduce step collects answers from the 
nodes and combines them into an answer to the original problem. Without technologies 
like Hadoop and MapReduce, and relatively inexpensive computer power, processing big 
data would not be cost-effective; in some cases, processing might not even be possible.

While some sources of big data are publicly available (Twitter, weather data, etc.), much 
of it is private information. Medical records, bank account information, and credit card 
transactions, for example, are all highly con�dential and must be protected from computer 
hackers. Data security, the protection of stored data from destructive forces or unauthorized 
users, is of critical importance to companies. For example, credit card transactions are 
potentially very useful for understanding consumer behavior, but compromise of these data 
could lead to unauthorized use of the credit card or identity theft. Data security company 
Datacastle estimated that the average cost of a data breach for a company in 2012 was $7.2 
million. Since 2014, companies such as Target, Anthem, JPMorgan Chase, and Home Depot 
have faced major data breaches costing millions of dollars. 

The complexities of the 4 Vs have increased the demand for analysts, but a shortage of 
quali�ed analysts has made hiring more challenging. More companies are searching for 
data scientists, who know how to effectively process and analyze massive amounts of data 
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